
Applicat ion
Development

Domain

Technical
Archi tecture

May 08, 2003

Version 2 .5

Application Architecture ver 25.doc Page 2 of 54

History of Changes
12/06/2000 Added a Too Be Determined List (GAPs)

2/21/2002 Standards 1: wireless & mobile devices added.

Standards 2: VB.NET added as Research/Emerging.

Standards 4: Use of XML for parameter and configuration files added

Standards 5: Use of XML documents for message passing added.

Standards 5: Web Services, W3C XML Schema, and XLST added as
Research/Emerging.

Standards 6: ASP.NET added as Research/Emerging.

Standards 6: Table added comparing Java Server Pages vs. Active
Server Pages.

Standards 6: Java / Visual Basic Integration – Web Service added for
consideration.

Standards 6: Depoyment Guidelines – Information on deploying
Internet applications in DMZs added; deployment of Intranet/Extranet
Applications using Java Web Start added.

Standards 6: Integrated Development Environments (IDEs) – JBuilder,
Visual Studio.NET, XMP SPY 4.0 added as Research/Emerging;
footnote clairfying the role of Visual C++ with Visual Basic added.

Standards 7: Application Security Standards – replaced by appendix
A, Application Security Guidelines.

Standards 8: Standard Project Management Tools – PlanView PSA
added as Research/Emerging.

Standards 11: Developer-Oriented Report Writers – Actuate
e.Reporting Suite 5 added to Research/Emerging.

To-Be-Determined List – Modified to add Web-based Ad Hoc Tools,
and Web-based OLAP tools; consideration of OO COBOL as a
strategic language was dropped.

Appendix A, Application Security Guidelines added.

5/21/2002 Standards 2: Standard Business Tier Lanquages - Oracle Forms
(PL/SQL) listed as Transitional.

Standards 6: Java Server Pages (JSP) with Servlets and Enterprise
Java Beans – Oracle Web removed from Research/Emerging.

Standards 6: Intranet/Extranet Applications – Deployment of internal
Oracle Forms applications via a browser using Oracle 9iAS listed as
an acceptable interim web-enabling technique until applications can be
migrated to Java.

Standards 6: Integrated Development Environments – Oracle Forms

Application Architecture ver 25.doc Page 3 of 54

moved from Research/Emerging to Transitional.

6/25/2002 Standards 11: Developer-Oriented Report Writers replaced by three
standards sections. Standards 11: Enterprise Reporting / Structured
Information Delivery; Standards 12: Ad Hoc Query / Analysis; and
Standards 13: Online Analytical Processing (OLAP) tools.

10/18/2002 Standards 2: Added caveat to avoid using proprietary features or
extensions to Java.

Standards 5: Use of XML Schema and XSLT reclassified from
research to strategic.

2/6/2003 Standards 2: Added mandatory compliance to State Java Coding
Standards and Conventions for custom-developed Java applications.

Standards 14: Geographic Information Systems (GIS) Software
Standards added.

5/8/2003

<NEW>

Standards 2: Added VB.NET as a Strategic Acceptable language.
Visual Basic v6.0 moved to Transitional. Section on Java / Visual
Basic / .NET interoperability added.

Standards 6: Explanation of ASP.NET added. ASP.NET added as
Strategic; Active Server Pages moved to Transitional. Comparison
table updated to include JSP, ASP, and ASP.NET.

Windows Forms added as a Strategic option for rich Intranet clients.

VBScript moved to Transitional.

Standards 8: Integrated Development Environments (added as new
standard – previously included in Web Development). Visual
Studio.NET moved to Strategic; Visual Studio (v6.0) moved to
Transitional. Borland JBuilder Enterprise moved to Strategic; Oracle
JDeveloper, Visual Age Java / WebSphere Application Developer, and
Visual Café moved to Transitional.

Appendix C, .NET Migration Strategy, added

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.doc Page 4 of 54

Table of Contents

History of Changes ...2

Table of Contents ...4

Mission ...7

Introduction and Background ...7

Application Architectures 11

Designing And Developing Applications 11

Application architectures 12

Application Architecture 1: Monolithic Applications 12

Application architecture 2: Two-tier client/server applications 14

Application architecture 3: Three-tier client/server applications 17

Application architecture 4: N-tier Service Oriented Architecture 18

Application architecture 5: Web-enabled Applications 21

Principles..24

Principle 1. Information is an enterprise asset 24

Principle 2. Leverage Data Warehouses 24

Principle 3. Ensure Security, Confidentiality and Privacy 24

Principle 4. Integration 24

Principle 5. Reduce Integration Complexity 25

Principle 6. Re-use before Buying, Buy before Building 25

Principle 7. Reengineer First 25

Principle 8. Total Cost of Ownership 25

Principle 9. Minimize Platform Configurations 26

Principle 10. Basic Information Services 26

Principle 11. Anytime/Anywhere Access 27

Principle 12. Shared Components Using an N-Tier Model 27

Principle 13. Logical Partitioning and Boundaries 27

Principle 14. Message-Based Interfaces 28

Principle 15. Event-Driven Systems 28

Principle 16. Physical Partitioning of Processing 28

Principle 17. Object-Oriented 28

Principle 18. Formal Software Engineering 29

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.doc Page 5 of 54

Principle 19. Mainstream Technologies 29

Principle 20. Industry Standards 29

Principle 21. Disaster Recovery / Business Continuity 30

Principle 22. Enterprise Network as Virtual LAN 30

Principle 23. Scalability 30

Best Practices...31

Best Practice 1: Partition application functionality to mirror business processes 31

Best Practice 2: Design applications for future usage and added functionality. 31

Best Practice 3: Select best-of-breed Application Development tools in compliance
with architecture. 31

Best Practice 4: Use an integrated tools set to support the use of the State’s formal
software engineering practices 32

Best Practice 5: The design of all applications shall be documented. 32

Best Practice 6: Design for the n-tier service oriented architecture. 32

Best Practice 7: Design applications that are platform independent. 32

Best Practice 8: Generalize application interfaces 32

Best Practice 9: Implement Business Rules As Discrete Components 33

Best Practice 10: Access data through business rules 33

Best Practice 11: Assign responsibility for business rules to business units 33

Best Practice 12: Make business rule components platform-neutral 33

Best Practice 13: Achieve working system first 34

Best Practice 14: Design for manageability 34

Best Practice 15: Adopt coding standards 34

Best Practice 16: Design for ease of testing 35

Technical Standards...36

Standards 1: Client Interface Standards (Presentation tier) 37

Standards 2: Standard Business Tier Languages 38

Migration: Microsoft Visual Basic 6 (COM) to .NET 39

Interoperability (Java / Visual Basic (COM) / .NET): 39

Standards 3: Standard Data Access Tier 41

Standards 4: Application Architectures 41

Development Guideline: Parameter and configuration files 41

Standards 5: Inter/Intra Application Communication 42

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.doc Page 6 of 54

Standards 6: Web Development Standards 43

Active Server Pages (ASP) with ActiveX components: 43

ASP.NET : 43

Java Server Pages (JSP) with Servlets and Enterprise Java Beans: 43

Deployment Guidelines: 45

Internet Applications 45

Intranet/Extranet Applications 45

Standards 7: Application Security Standards 47

Standards 8: Integrated Development Environments (IDEs) 47

Standards 9: Configuration (Source Code) Management 48

Standards 10: Object Modeling Tools 49

Standards 11: Enterprise Reporting / Structured Information Delivery 49

Java-based reporting tools: 49

Microsoft-oriented reporting tools: 50

Standards 12: Ad Hoc Query/Analysis 50

Standards 13: Online Analytical Processing (OLAP) tools 51

Standards 14: Geographic Information Systems (GIS) Software Standards 52

Product Selection and Upgrades: 52

ArcView GIS 3.x and Arc/Info 7.x to ArcGIS 8.x conversion issues: 52

Integration and the future of GIS: 53

Application Development: 53

Standards 15: Standard Project Management Tools 53

To be determined:...54

Standards 54

Guidelines 54

Other 54

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 7 of 54

Mission
Application Architecture identifies criteria and techniques associated with the design of
applications for the State’s distributed computing environment that can be easily modified to
respond quickly to the State’s changing business needs, as well as to the rapidly evolving
information technologies available to support those needs.

Introduction and Background
The State of Connecticut, like most large public and private enterprises, relies heavily on
computer applications to support its business operations. Because the State’s business processes
change dynamically in response to both legislation and new demands from citizens, it is
important that the State’s computer applications also be able to change rapidly.

However, many current State applications are either monolithic or two-tier client/server
applications. This existing inventory of “legacy” applications reflects the tools available at the
time the applications were developed and how system development projects were funded and
managed. As illustrated in Figure 2-1, many applications were designed and funded to perform a
specific operation for a specific agency on a specific hardware platform.

Figure 2-1. Legacy Applications were developed and operated independently.

These applications typically were developed independently using different languages and tools.
The ability to communicate with other applications or systems or to adapt to changes in the
business processes generally was not a design requirement.

The architecture of the existing inventory of applications adversely impacts the State’s business
in four key ways:

• The cost and time needed to modify existing applications to support new business
requirements

• The cost and time required to enable existing applications to take full advantage of rapidly
evolving networking technologies such as the Internet or new networked systems such as
GIS (Geographic Information Systems)

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 8 of 54

• The difficulty in integrating applications to share common services and data
• The expense to develop, use, and maintain new applications because there is little reuse of

code between applications
Recently, application development tools and technology have begun to evolve to help address
these problems. A number of options now exist to meet business needs and deliver information
to people when and where they need it. These options include:

• Reuse of Code: Units of code previously duplicated in many applications can be packaged
into components or services for reuse in different applications.

• Middleware: Shared software allows applications to communicate with each other, access
data residing on different platforms, and access shared services.

• New User Interface Options: There is an expanding array of user interface options - including
Web browsers, personal digital assistants (PDAs), and interactive voice response units
(IVRs).

Using these components in well-designed three-tier or N-tier, client/server application
architectures can create solutions to meet the State’s ever changing business needs.

Here are some examples that address issues facing the State today.

• If the code used in many applications for basic e-mail functionality was implemented as a
service in a shared component, we could change e-mail technology without affecting the
applications using this service.

• Using middleware, an application to issue fishing licenses could access an application
verifying child support payments, even if the applications are developed and run on different
types of systems for different agencies.

• When an inmate convicted of certain offenses is released from prison, a Web-enabled
application and extranet supporting the prison release process could automatically issue
notices to local authorities. The application would be proactive, “pushing” information to
users rather than the users “pulling” information out of databases to use it.

• State Highway Patrol personnel equipped with GIS capable PDAs could determine the
current location and best routing for emergency response vehicles.

There are many ways applications can be designed to maximize their flexibility, including:

Logical application boundaries. Applications should be designed along logical application
boundaries that mimic the business processes they support (Figure 2-2 and the following text).

Figure 2-2. Logical Application Boundary

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 9 of 54

Suppose the State establishes regional textbook warehouses to supply books to the public
schools. A school places an order using the textbook requisition application that sends an order
message across the logical application boundary to the textbook inventory application. The
inventory application decides which warehouse should ship the books based on its proximity to
the requester and the availability of the requested textbooks.

The requisition system does not need to know that there are multiple warehouses. This would
allow changing warehouse locations (e.g., add a new warehouse or consolidate warehouses)
without disrupting the requisition process. The requisition application delegates responsibility to
the inventory application to route the order to the most appropriate warehouse.

Asynchronous processing. Applications can be designed to take advantage of new methods of
communication involving asynchronous processing.

Just as voice mail permits communication without both parties being available at the same time,
asynchronous messaging technologies permit the “de-coupling” of related applications. An
application does not have to batch requests before sending them to a second application, nor do
both applications have to “standby” while preparing, sending, processing and responding to
requests. The applications are designed to put requests and responses in a queue. (See Figure 2-
3.) Each application has the flexibility to process the information when it is ready (e.g., when
information is generated, after an application completes its current job, or at the next logon).

Figure 2-3. Asynchronous Processing

Asynchronous processing is especially critical as:

• The number of remote and/or mobile users with on-demand dial-up or wireless
communications increases; and

• Flexible, high performance, shared networks (LANs/WANs/ Internet) become involved that
assure very high availability of all resources, but may not provide the constant delay times
for the communication needed for traditional synchronous (e.g. SNA) applications.

Using components. Designers can build flexible, scalable, and extensible applications by using
components as application building blocks, similar to building cars on an assembly line. Using
previously built and tested components in different ways or with new components can accelerate
the design, development, and delivery of new applications. Sharing of components across
applications also can eliminate significant duplicate design and test efforts. (See Figure 2-4.)

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 10 of 54

Figure 2-4. Using Components

With this approach, each component addresses one business rule. If the business rule changes,
only that component needs modifying. The rest of the application remains unaffected. Equally
important, the business rule is changed only once regardless of how many applications use it.

The greatest efficiency can be achieved by combining new technologies (e.g., web-enabled
applications, middleware and components), applications designed for flexibility, and methods
that foster a culture of reuse. To do this effectively, developers’ functions may need to change as
new roles evolve within the State’s IT organizations for technicians having specialized skills to:

• Identify, analyze, and understand key business processes.
• Design, develop, test, and maintain components.
• Architect applications that effectively deal with multiple user access methods, as well as with

various local area network (LAN) and wide area network (WAN) performance constraints.

• Optimize inter- and intra-application communications in terms of both messaging formats
and message exchange mechanisms.

The technical topics in this chapter describe designing, developing, and managing applications in
more detail, including standards and best practices that apply to those topics. The Technical
Topic on designing and developing applications compares the different architectural patterns
such as monolithic, n-tier client/server and web-enabled applications. It also details some of the
benefits of developing three-tiered and component-based applications.

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 11 of 54

Application Architectures

Designing And Developing Applications
Introduction

All computer applications have three general areas of functionality:

Interfaces allow applications to communicate with users, other applications, and data resources.
In n-tier applications, changes in business rules normally do not require changes in interface
code. Interfaces may need updating for other reasons. Examples include when changes occur in
another computer system that interfaces with that application or when users need a graphical user
interface instead of a character-based interface for that application.

Since applications interface with people, the user interface receives the most attention. Other
interfaces are equally important. Traditionally, people accessed computer applications using
character terminals (e.g., 3270) or graphical user interfaces (e.g., Microsoft Windows). Recently
introduced interfaces include telephones (via IVRs), web browsers, and wireless devices.

Business rules support the business processes that agencies follow. The rules automate the
process, define what must be done, and how it must be done. As agency business processes
change, the business rules in the applications that support the agencies also must change.
Business rules can be isolated into components.

Two examples of State business rules would be:

• Issue a check IF (a) an invoice has been presented AND (b) the invoice is for work for which
a purchase order was issued AND (c) the work has been performed AND (d) there is enough
money in the bank to cover the check.

• This student is eligible for early graduation IF (a) (s)he has completed the required work
AND (b) (s)he has achieved a grade point average of 3.0 AND (c) it is not yet time for
her/him to graduate AND (d) (s)he is at least 16 years old.

Business rules are processes followed when business events occur (i.e., business events are
triggers for business rules). If business rules define what to do, business events define when it
should be done. The following business events might invoke the associated business rules:

• A person applying for public assistance triggers the business rules for “Determine eligibility
for public assistance.”

A person applying for a corporate charter triggers the business rules for “Process application for
incorporation.”

• A motorist driving erratically triggers the business rules for “Traffic stop.”
• It is April 16 triggers the business rule for “Late tax return.”
Data access. Data access code automates the storing, searching, and retrieving of data by
computer applications. In n-tier applications, changes in business rules may not require changes
to the code that accesses data, but occasionally, they do.

The ways in which these application functions are assembled determines:

• The flexibility of the application.
• How quickly the application can be modified to support changes in business and technology.

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 12 of 54

• How easily the application interfaces with people and with other applications.
Middleware provides links among the functional levels of the application, as well as with the
components supporting the application.

• Application architecture should be independent of any specific technology or set of
development tools. Its components, interfaces, business rules, and data access code, can be
implemented with any standard language on any supported platform that supports the
business needs of the application.

Application development tools are critical to the development and support of applications.
Regardless of the tools used, it is important to design each tier to be portable across platforms.
Tool limitations can, however, impact tradeoffs in an application’s design/architecture. The
architecture should determine the tool selection, not the other way around.

There are three approaches for selecting tools to develop client/server applications:

Best of breed. Use separate, specialized tools for each application tier. Use middleware to
support communications between the different tiers.

Front end/back end. Two different tools are used: a specialized user interface development tool
and an integrated tool set that provides middleware for the business rules and data access tiers.
The middleware must support communications between the user interface and other two tiers.

Integrated. Integrated tool sets, or CASE tools, are used that generate code for all tiers of the
application. These tools provide the middleware necessary to support communications between
all application tiers.

N-tier service oriented application architectures require additional types of tools.

• Repositories (libraries) to keep track of business rules that have been automated by
components.

• Software management tools to provide version control, configuration management, and
software distribution services.

Application design and development consists of the following technology components:
Monolithic Applications, Two-Tier Client/Server Applications, Three-Tier Client/Server
Applications, N-tier Service-Oriented Applications, and Web-Enabled Applications. These
components will be discussed in a historical sense.

Application architectures
Application Architecture 1: Monolithic Applications
Monolithic applications are applications where the code that implements the business rules, data
access, and user interface are tightly coupled together as part of a single, large computer
program. A monolithic application typically is deployed on a single platform, often a mainframe
or midrange computer. There are examples of monolithic applications running on smaller
systems - or even distributed across multiple machines. The determining characteristic of a
monolithic application is that the code is tightly coupled and highly interdependent.

Monolithic computer applications are deployed across the State. Since the State provides many
different services to its citizens, there are many computer applications to support those services.
In most cases, these applications were developed independent of each other using different

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 13 of 54

combinations of technology. For example, one agency application may use COBOL, CICS, and
VSAM. Another application to support the same group of citizens may use COBOL and IMS.

Monolithic applications have several drawbacks:

• It is costly and time consuming to modify monolithic applications.
Changing one piece of code that implements a business rule, accesses data, or provides an
interface to users or other systems likely impacts other code in the application. When any code in
a monolithic application changes the entire application must be re-tested and re-deployed.

Figure 2-5. A monolithic application

• It is difficult to integrate monolithic applications to share services and data.
Most monolithic applications do not have well-defined interfaces that can be accessed by
other applications or new user interfaces.

• There is little reuse of redundant code between monolithic applications, making it more
expensive to build and maintain them.
Many monolithic applications contain functionality already replicated in other applications.
Monolithic applications are slower and more costly to build because existing functionality
must be reinvented many times. Monolithic applications are more expensive to operate, since
the same data often has to be gathered, entered, and stored in many places.

• It is difficult to have monolithic applications communicate with other applications.
Most existing applications do not have the ability to communicate with other applications,
within an agency, and with applications in other agencies.

• Monolithic applications can be accessed using only a single user interface.

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 14 of 54

Most monolithic applications were developed to be accessed via 3270 terminals. Having a
single user interface is a limitation when application services need to be accessed from other
user interfaces such as Web browsers or the telephone (via IVRs).

• There is little flexibility where monolithic applications can be deployed.
Most monolithic applications must be deployed on a single machine type, for example a
mainframe. This could be because either the software code is tightly coupled to that machine
type or the mainframe is needed to get enough processing capacity to process all parts of the
application: the user interface, the business rules, and the data access code.

Application architecture 2: Two-tier client/server applications
Some State agencies have attempted to overcome the business impact of monolithic applications
by adopting client/server technology for new applications. The terms “client/server”, “client”,
and “server” are often misunderstood. Many believe that “client/server” means an application
with a graphical user interface and a relational database. Neither is necessarily true. In fact,
client/server applications are constructed of software “clients” that, in order to perform their
required function, must request assistance - “service” - from other software components known
as “servers.” Middleware provides communication between the client and server.

Early client/server applications used architectures dictated by the tools used to write them. As a
result, most early applications used a two-tier client/server architecture. The “tiers” of
client/server applications refer to the number of executable components into which the
application is partitioned, not to the number of platforms where the executables are deployed.
Sometimes, the tiers into which the application is partitioned is called “logical partitioning”, and
the number of physical platforms on which it is deployed is called “physical partitioning.”

In two-tier client/server architecture, application functionality is partitioned into two executable
parts, or “tiers.” On one model, one tier contains the code that implements a graphical user
interface (GUI) and the code that implements the business rules. This tier executes on PCs or
workstations and requests data from the second application tier, which usually executes on the
machine where the application’s data is stored. This model is referred to as two-tier, fat client.
Though while the application has two tiers of executable code, most of the code is contained in
the tier executing on the workstations - the “fat client.” (See Figure 2-6)

Since business rules are tightly integrated with user interface code, the code that implements the
business rules must be deployed on the same platform(s) as the user interface. Thus, the entire
workstation-resident portion of an application must be re-deployed if a business rule or the user
interface changes. If the number of workstations is high or the workstations are geographically
dispersed, the maintenance costs for two-tier, fat client applications can escalate quickly.

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 15 of 54

Figure 2-6. A two-tier, fat client application

A second model for two-tier client/server applications has much of the code that implements the
business rules tightly integrated with the data access code, sometimes in the form of database
stored procedures and triggers. This model is called two-tier, fat server. (See Figure 2-7.)

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 16 of 54

Figure 2-7. A two-tier, fat server application

Two-tier, fat server applications are often implemented as mainframe applications with Web
browsers as user interfaces. This approach may be a useful first step to migrate to a three-tier or
n-tier service oriented application architecture. Users can enjoy the speed and ease-of-use
provided by the web’s graphical interface while developers update other parts of the application.

Since the business rules in two-tier applications are tightly integrated with the user interface code
or data access code, two-tier client/server applications have the following drawbacks:

• Two-tier client/server applications are difficult and expensive to modify when business
requirements change.
The business rules tend to be monolithic. Changing a business rule may impact other
business rules and the rest of the application.

• There is little reuse of redundant code in two-tier client/server applications.
It is difficult to reuse business rules elsewhere (e.g., in other computer applications that
require similar services or in batch processing that is part of the same application) when they
are tightly coupled to each other and to the user interface (fat-client) or the data (fat-server).

• There is little flexibility in selecting the platforms where the two-tier client/server
applications will be deployed.
In two-tier, fat client applications, the business rules must execute on the same platform as
the user interface because the code they are implemented in is tightly coupled with the
interface. Likewise, in two-tier, fat server applications, the business rules can only execute on

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 17 of 54

the machine that hosts the database because they are implemented either with or inside the
database.

• Users only can access two-tier client/server applications with PCs running a graphical user
interface.
Since the user interface is graphical and requires a workstation, users with other I/O devices
are excluded from using the application. These devices include existing non-graphics
terminals (e.g., UNIX terminals or 3270 terminals), telephone interfaces via IVRs, and new
user interface devices still evolving (e.g., PDAs and other mobile communications devices).

• Two-tier client/server applications can be more difficult to manage than monolithic
applications.
Changes to either business rules or the GUI often mean that the entire workstation-resident
portion of the application must be redistributed and reinstalled on every workstation that uses
the application. Such software distributions can be time-consuming, costly and logistically
difficult to manage.

Application architecture 3: Three-tier client/server applications
Three-tier client/server applications are partitioned into three executable tiers of code: the user
interface, the business rules, and the data access software. This does not mean that the three tiers
execute on three different platforms. Often, the business rule tier is deployed on the same
platform as the data access tier, or on the same platform(s) as the user interface.

Properly implemented three-tier client/server applications can achieve higher performance
efficiency by providing more flexibility in where application executables can be deployed as
well as by making use of an enterprise’s n-tier shared services. This makes three-tier client-
server applications a good transition step from monolithic or two-tier applications.

Figure 2-8 illustrates a three-tier client/server application. Notice that in the deployment - or
physical partitioning - of the application, the business rules are separate from the user interface
and the data access code. The business rules may be deployed on their own server or on the same
server as the database. Although it is also possible to deploy the business rules on the same
platform as the user interface in a three-tier architecture, it is not recommended because of the
software management problems associated with using many or dispersed user workstations.

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 18 of 54

FIGURE 2-8. A THREE- TIER CLIENT/SERVER APPLICATION

Three-tier client/server applications offer the following advantages:

• Three-tier client/server applications can be easier to modify to support changes in business
rules.

• With three-tier client/server applications, there is less risk in modifying the code that
implements any given business rule.

• Three-tier client/server applications can be made to support multiple user interfaces:
character, graphical, web browser, telephones, and others.

Application architecture 4: N-tier Service Oriented Architecture
Many problems inherent in the State’s existing monolithic and two-tier applications can be
overcome by implementing applications with a three-tier architecture. However, large, complex
projects that are anticipated to have high usage volumes and/or long life spans may be better
served by an n-tier service oriented architecture.

In the n-tier service oriented architecture, applications are partitioned into discrete functional
units called “services.” Each service implements a small set of related business rules or function
points. If a business rule must be modified to support changing business requirements, only the

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 19 of 54

service that implements that business rule is impacted. The remainder of the application remains
intact.

The adaptability of applications is further enhanced by the use of an n-tier shared services
architecture that segments rule processing into a series of services that can be accessed
individually. In the application illustrated in Figure 2-9, each business rule is implemented as a
discrete executable (a “service”) that any client can request.

Figure 2-9. An n-tier client/server application

The maximum benefits of n-tier architecture are realized when many n-tier applications are
deployed across the State, sharing common software services and offering multiple user
interfaces. In this environment, any application can access any service, provided the application
has the proper security permissions. In n-tier service-oriented application architecture:

• Some services will be shared by applications from multiple agencies.
• Others services will be shared by applications within a single agency.
• A few, highly specialized services may be developed, at least initially, for a specific

application.
Since the business rules are implemented as separate executables, any combination of business
rules may run on any combination of platforms. This offers flexibility in selecting the platforms
where the application components can be deployed, resulting in a high degree of scalability. As
transaction loads, response times, or throughputs change, an individual service can be moved
from the platform on which it executes to another, more powerful platform.

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 20 of 54

Since business rules are implemented discretely instead of being tightly integrated with the
graphical user interface, changes to business rules typically do not require updates of code on the
workstations accessing the application. This is very important in managing an application with
many, geographically dispersed workstations.

Also, since business rules are implemented in discrete services, the same business rule can be
invoked by users accessing the application from a GUI, from character terminals, from web
browsers, by telephone from IVRs or by batch jobs. A separate interface tier provides
programmer productivity and consistency of application behavior.

N-tier service oriented applications offer the following key advantages:

• N-tier service oriented applications are highly scaleable.
• An n-tier service oriented architecture offers the best performance of any client/server.
• N-tier service oriented applications offer the highest potential for code reuse and sharing.
The greatest strength of a service-oriented architecture is the opportunity it provides for the
repeatable, rapid development of new applications. Figure 2-10 illustrates N-tier applications in a
service-oriented architecture.

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 21 of 54

Figure 2-10. N-tier applications in a service-oriented architecture

Application architecture 5: Web-enabled Applications
There are two types of web-enabled applications. Some web-enabled applications provide
information to clients in page format using HTML and XML to manage content dynamically.
Other Web-enabled applications have fully interactive functionality and near real-time
transaction processing capabilities.

Web-enabled applications are a special case of client-server applications where the “client” is a
standard Web browser like Netscape Communicator or Microsoft Internet Explorer. The browser
serves as another type of user interface (thin client) in the three-tier or n-tier application. Use of a
standard Web browser as the client provides the user with a familiar, intuitive interface and
significantly simplifies the process for developing and distributing the user interface.

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 22 of 54

Figure 2-11. Web-enabled applications use a Web Browser for the user interface

Ideal web-enabled applications for the State are n-tier service oriented applications that use:

• An industry standard Web browser as the thin client;
• Intranets to provide secure access by State users;
• Extranets to provide restricted access by selected State business partners; and
• The Internet and firewall technology to provide managed access by citizens and other

interested parties.
Web-enabled applications will continue to grow in importance as a means to timely and cost
effective delivery of information to the State’s employees, business partners and citizens.

Web browsers are applications that accept text in the form of HTML/XML statements. The
HTML/XML is interpreted and the file is presented on the desktop screen in web page format
based on the corresponding HTML/XML. Web pages can contain hyperlinks to other documents,
and multimedia such as text, images, audio and video.

The web started out as an environment for publishing static pages using HTML. Early on, the
notion of enabling interactive, transaction oriented applications via the same browser became
attractive since it could eliminate the need to install client software on every user’s workstation.
Browser technology supports the execution of programs written in scripting languages embedded
in an HTML page. Browser technology also supports the execution of programs written in

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 23 of 54

scripting languages including JavaScript, VBScript and others. Browsers may also support the
running of Java Applets in the context of a Java Virtual Machine (may require a plug-in).

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 24 of 54

Principles
Principles are intended to guide the evaluation, selection, design, construction and
implementation of this domain and its elements.

Principle 1. Information is an enterprise asset
Information is valued as an enterprise asset, which must be shared to enhance and
accelerate decision making.

Justification

- Enhances the efficiency and effectiveness of the delivery of services.
- Most information is in isolated pockets such that the value of information is not always

recognized.
- Enables new enterprise-wide solutions.
- Treating data as an enterprise asset increases its integrity and relevance.

Implications

- Need consistent data dictionaries, general-purpose objects, and component reuse across
agency applications.

Principle 2. Leverage Data Warehouses
We should leverage data warehouses to facilitate the sharing of existing information
to accelerate and improve decision-making at all levels.

Justification

- Data can be replicated and combined from multiple agencies without changing the
originating systems or developing new systems.

- Reduced business cycle times have led to a need for faster access to more information.
- There is a significant burden on programmers to generate reports and data queries. Data

warehouses and their associated end-user tools make it possible to relieve this burden by
making it the responsibility of end users.

- Warehouses fulfill the need for internally consistent data.

Principle 3. Ensure Security, Confidentiality and Privacy
IT systems should be implemented in adherence with all security, confidentiality and
privacy policies and applicable statutes.

Justification

- Helps to safeguard confidential and proprietary information.
- Enhances public trust.
- Enhances the proper stewardship over public information.
- Helps to ensure the integrity of the information.

Principle 4. Integration
Systems must be designed, acquired, developed, or enhanced such that data and
processes can be shared and integrated across the enterprise and with our partners.

Justification

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 25 of 54

- Increase efficiency while better serving our customers (e.g., the public, agencies, etc.).
- Redundant systems cause higher support costs.
- Ensures more accurate information, with a more familiar look and feel.
- Integration leads to better decision making and accountability.

Principle 5. Reduce Integration Complexity
The enterprise architecture must reduce integration complexity to the greatest extent
possible.

Justification

- Increases the ability of the enterprise to adapt and change.
- Reduces product and support costs.

Principle 6. Re-use before Buying, Buy before Building
We will consider re-use of existing applications, systems, and infrastructure before
investing in new solutions. We will build only those applications or systems that will
provide clear business advantages and demonstrable cost savings

Justification

- Use and availability of effective packaged solutions is increasing.
- Using tested solutions reduces risks.
- Reduces the total cost of ownership.

Implications

- Purchased applications should be compatible with and, where possible, advance the
State’s technical architecture.

- A Statewide portfolio of strategic applications should be published and maintained.
- Define and adhere to a formal technical review process when evaluating new solutions.

Principle 7. Reengineer First
New information systems will be implemented after business processes have been
analyzed, simplified or otherwise redesigned as appropriate.

Justification

- Work processes will be more streamlined efficient and cost effective.
- Work processes, activities, and associated business rules will be well understood and

documented.
- Reduces the total cost of ownership.

Principle 8. Total Cost of Ownership
Adopt a total cost of ownership model for applications and technologies which
balances the costs of development, support, training, disaster recovery and retirement
against the costs of flexibility, scalability, ease of use, and reduction of integration
complexity.

Justification

- Leads to higher quality solutions.
- Enables improved planning and budget decision-making.

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 26 of 54

- Reduces the IT skills required for support of obsolete systems or old standards.
- Simplifies the IT environment.

Principle 9. Minimize Platform Configurations
Create a small number of consistent configurations for deployment across the
enterprise.

Justification

- The cost of IT personnel is increasing and the cost of hardware is decreasing rapidly, i.e.,
“Ride the hardware cost curve”.

- This is the most efficient approach to enterprise-wide infrastructure configuration and
maintenance.

- By constantly ‘tweaking’ the performance of an individual server or desktop computer, a
multitude of unique configurations is created, thus increasing support and maintenance
costs.

- Standardized decisions in product selection simplifies training, learning curve and skills
transfer.

Implications

- Platform selection and configuration should support and be coordinated with application
requirements and business needs.

Principle 10. Basic Information Services
A standardized set of basic information services (e.g., email, voicemail, e-forms, user
training) will be provided to all employees.

Justification

- Increases productivity.
- Reduces costs of maintenance.
- Provides the basis for multi-agency or statewide business initiatives.
- Provides for universal employee access to information.
- Leverages the investments made in technology.

Implications

- Basic information services should be based on, coordinated with, and compatible with
application standards.

- Basic information services should be wrapped in standard components and leveraged
across the enterprise to facilitate reuse and enhance adaptability.

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 27 of 54

Principle 11. Anytime/Anywhere Access
Applications, systems, and infrastructure that support the anytime/anywhere access to
information and services will be given priority over alternate solutions where
practical.

Justification

- Provides maximum value to constituents, partners, and public servants.
- Minimizes deployment costs.
- Makes government services easy to use.

Implications

- Application technologies must provide broad reach through the public Internet, kiosks,
and voice recognition.

- The State must develop in-house expertise to support broad-reach technologies.
- The State must make the development of an infrastructure that supports Internet

applications and technologies a priority.
- The State should consider using Internet technologies first when developing new

applications.
- When buying solutions, priority must be given to applications that leverage the Internet

and other customer-friendly interfaces.

Principle 12. Shared Components Using an N-Tier Model
Applications, systems and infrastructure will employ reusable components across the
enterprise, using an n-tier model.

Justification

- Enables simplification of the environment and geographical independence of servers.
- Takes advantage of modular off-the-shelf components.
- Reuse will lower costs and maintenance efforts.
- Allows for leveraging skills across the enterprise.

Implications

- Requires an organization that administers shared components and promotes reuse.
- Components need to be documented and publicized.
- Requires an enterprise-wide repository standard.
- Applications must be designed to be independent of the User Interface to support access

via a variety of sources (e.g. Internet browser, kiosk, voice recognition).

Principle 13. Logical Partitioning and Boundaries
The logical design of application systems and databases should be highly partitioned.
These partitions must have logical boundaries established, and the logical boundaries
must not be violated.

Justification

- A change in a database or application can potentially affect many large programs, if they
are not highly partitioned.

- Re-coding leads to time-consuming re-testing.

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 28 of 54

- Partitioning isolates/minimizes change impact.
- Partitioned code is more adaptive to changes in internal logic, platforms, and structures.

Implications

- Publish and use standard application patterns (models) to facilitate design.

Principle 14. Message-Based Interfaces
The interfaces between separate application systems must be message-based; this
applies to both internal and external systems.

Justification

- The use of messaging is important for enforcing the architecture principle of logical
partitioning and boundaries.

- Enables rapid response in maintenance and enhancement activities as required by
changes in business processes.

- Messaging technology simplifies integration efforts.
- Messaging technology allows for transparency in locations, databases, and data

structures.

Principle 15. Event-Driven Systems
We must deploy application systems that are driven by business events.

Justification

- Increases adaptiveness.
- Business processes are a series of business events.
- Business process changes involve the adding, removing, or changing of business events.
- Increases linkage to the business.
- Mirrors the actual business environment.
- Easier to realign IT when change occurs.

Implications

- Requires business analysis expertise (may be best served by establishing a business
analyst position).

Principle 16. Physical Partitioning of Processing
We should separate on-line transaction processing (OLTP) from data warehouse and
other end-user computing.

Justification

- Separating end-user requests and OLTP maximizes the efficiency of both environments.
- Growth in OLTP is incremental, and requirements are predictable.
- Growth in data warehouses and end-user computing has been nonlinear, and requirements

are very difficult to predict.
- Fosters the concept of data stewardship.

Principle 17. Object-Oriented
Application delivery should be evolving toward an object-oriented approach.

Justification

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 29 of 54

- Objects will allow for easier adaptation of business process changes.
- ISVs (independent software vendors) will progress from components to objects.
- All industry leading application development tools are either object-oriented or object-

based.
Implications

- Component development is the logical and practical evolutionary step toward objects.
- A fundamental knowledge of objects must be obtained.
- Object trends must be watched.

Principle 18. Formal Software Engineering
The State shall adopt and employ consistent software engineering practices and
methods based on accepted industry standards.

Justification

- Reduces training costs.
- Leads to benchmarks for measurement.
- Enables improved quality assurance.
- Facilitates the reuse of programming modules and code.

Principle 19. Mainstream Technologies
IT solutions will use industry-proven, mainstream technologies.

Justification

- Avoids dependence on weak vendors.
- Reduces risk.
- Ensures robust product support.
- Enables greater use of commercial-off-the-shelf solutions.

Implications

- Niche solutions may require “bleeding-edge” technology where there is no “mainstream”
alternative.

Principle 20. Industry Standards
Priority will be given to products adhering to industry standards and open
architecture.

Justification

- Avoids dependence on weak vendors.
- Reduces risks.
- Ensures robust product support.
- Enables greater use of Commercial-off-the-Shelf solutions.
- Allows flexibility and adaptability in product replacement.

Implications

- Use of “de facto” industry standards may be necessary.

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 30 of 54

Principle 21. Disaster Recovery / Business Continuity
An assessment of business recovery requirements is mandatory when acquiring,
developing, enhancing or outsourcing systems. Based on that assessment, appropriate
disaster recovery and business continuity planning, design and testing will take place.

Justification

- Due to factors such as the Internet and Y2K, customers and partners have heightened
awareness of systems availability.

- The pressure to maintain availability will increase in importance. Any significant visible
loss of system stability could negatively impact our image.

- Continuation of business activities without IT is becoming harder.
- Application systems and data are valuable State assets that must be protected.

Implications

- May need stress testing tools/labs to ensure adequate system availability.

Principle 22. Enterprise Network as Virtual LAN
We must implement a statewide backbone network that provides a virtual, enterprise-
wide local area network.

Justification

- Networks are the essential enabling technology for client/server, Internet, and
collaborative computing.

- Knowledge workers’ increasing need for access to information across the enterprise. This
access must be seamless to reduce decision-making cycle times.

- Lack of a robust network architecture will impact the success of distributed applications.
- Expands the vision of organizations by reaching out to customers and suppliers.

Principle 23. Scalability
The underlying technology infrastructure and applications must be scalable in size,
capacity, and functionality to meet changing business and technical requirements.

Justification

- The Total Cost of Ownership is minimized.
- Encourages reuse.
- Leverages the continuing decline in hardware costs.

Implications

- Standards for scalability testing are needed.
- Tactical, time critical, solutions may need to be exempt from this requirement.

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 31 of 54

Best Practices
The State of Connecticut’s Application Architecture is the focal point for its applications systems
inventory. It defines how applications should be designed and how they can cooperate to gain the
maximum return on investment. It also defines where they execute. The Application Architecture
enables:

• Ease of integration of applications and application services.
• Efficient reuse of existing application assets.
• Faster deployment of new applications.
• Better responsiveness to changing business needs.
The best practices listed below provide guidelines for the design or purchase of applications and
application components supporting distributed, “thin client” computing for the State of
Connecticut.

Best Practice 1: Partition application functionality to mirror business processes
The boundaries between application component functionality should reflect the way
work is accomplished in the business unit. Interfaces between components reflect
business interfaces so there is linkage between the business and IT solutions.

Rationale:

Adaptive systems are dependent on built-in flexibility and extensibility. By implementing
solutions based on the business practices, the impact of future change can be isolated and
reduced.

Best Practice 2: Design applications for future usage and added functionality.
Rationale:

Most applications evolve to support new business requirements. Extensibility provides functional
scalability.

Best Practice 3: Select best-of-breed Application Development tools in
compliance with architecture.
Rationale:

- Historically, project teams selected tools (e.g., Visual Basic, Java) first, and then had to
live with the architecture those tools supported. That led to the problem of the tools
driving the architecture, and thus the business, rather than the business requirements
mandating the tools.

- There is no such thing as one application tool that satisfies all application requirements.
Most tools, such as user interface builders, end-user reporting, on-line analytical
processing and multi-media, are oriented toward different areas of development.

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 32 of 54

Best Practice 4: Use an integrated tools set to support the use of the State’s
formal software engineering practices
Rationale:

- Reduces total cost of ownership.
- Produces higher quality solutions
- Avoids disjointed steps in the software engineering process
- Helps automate proper technical documentation
- Documents metrics that facilitate process improvement

Best Practice 5: The design of all applications shall be documented.
Object models, interaction diagrams and other design artifacts record the structure, behavior and
interfaces of application solutions. These are important deliverables of the development process
that can benefit future efforts.

Rationale:

- The application design is an asset of the development process, facilitates extensibility and
adaptability, and provides for future reuse.

Best Practice 6: Design for the n-tier service oriented architecture.
Rationale

- While many problems inherent in the State’s existing monolithic and two-tier
applications can be overcome by implementing applications with a three-tier architecture,
large, complex projects that are anticipated to have high usage volumes and/or long life
spans will be better served by an n-tier service oriented architecture.

- N-tier applications are easily modified to support changes in business rules.
- N-tier applications are highly scaleable.
- An n-tier architecture offers the best performance of any application architecture.
- Any combination of user interfaces (e.g., character, graphical, web browser, and

telephone interfaces) may be implemented in an n-tier application.
- N-tier applications are less expensive to build and maintain because much of the code is

pre-built and shared by other applications.

Best Practice 7: Design applications that are platform independent.
Rationale

- Designers and operations support staff should make deployment decisions.
- Minimizing platform dependence builds in adaptability and scalability.
- Writing to standard API's protect applications from platform, network and database

changes.

Best Practice 8: Generalize application interfaces
• The code providing input and output to the user interface should be designed to provide input

and output to as wide a range of interfaces as needed. This should include other applications
as well as other types of user interfaces.

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 33 of 54

• Do not assume that application components will always be accessed via a graphical user
interface (or any other user interface).

• Avoid assuming a specific page size, page format, layout language or user language
whenever possible.

Rationale

- Generalizing application interfaces facilitates component reuse providing more flexible,
scalable solutions.

Best Practice 9: Implement Business Rules As Discrete Components
Rationale:

- Business rules need to be executed to ensure the correct policies are enacted governing
the accuracy of related data and the execution of the actions to be performed. By
implementing these as discrete components, the users of this information or process can
be assured of proper application of the rules.

Best Practice 10: Access data through business rules
Rationale:

- Designing applications so business rules control access to the data assures accuracy,
consistency and reliability.

- Data is created and used by business processes. In computer applications, data must be
created, used by, and managed by the application component that automates the business
process.

- Accessing data in any way other than by business processes bypasses the rules of the
module that controls the data. Data is not managed consistently if multiple processes or
users access it.

- Federated data should be used wherever possible to assure data accuracy and simplify
data management.

Best Practice 11: Assign responsibility for business rules to business units
Assign responsibility for defining and maintaining the integrity of business rules to
business units.

Rationale

- IT staff is responsible for coding and administering the software that implements business
rules in the network.

- The business units are responsible for the definition and integrity of business rules, and
for communicating changes in business rules to IT.

- Every business rule should be assigned to a custodian.

Best Practice 12: Make business rule components platform-neutral
Rationale

• Implement business rules in a non-proprietary, cross-platform language.
• This approach makes platform independence and portability possible.

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 34 of 54

Best Practice 13: Achieve working system first
Once the detailed application design is complete, concentrate on achieving a working
system utilizing off-the-shelf components whenever possible. This will allow the
system to be tested first and then optimized later.

Rationale

Early implementation of a working system provides:

- A test platform for proof of concept.
- Validation of the application design early in the development life cycle.
- Early warning of performance issues.
- Early validation or detection of issues provides a greater opportunity to take corrective

action.

Best Practice 14: Design for manageability
Design applications so they can be managed using the enterprise’s system
management practices and tools.

Rationale

Applications and their components require the following management functions:

- Software distribution.
- Start-up, shutdown, and restart of components.
- Starting multiple instances of a component.
- Configuration of components.
- Logging of component operations.
- Communication of errors, exceptions, and unexpected events.
- Security.
- Installation, removal, and update of application modules.
- Version control.

Best Practice 15: Adopt coding standards
Adopt coding standards, in all languages, on all platforms.

Rationale

Coding standards make debugging and maintenance easier. They should address (but not be
limited to):

- Naming conventions for variables, constants, data types, procedures and functions.
- Code flow and indentation.
- Error and exception detection and handling.
- Source code organization, including the use of libraries and include files.
- Source code documentation and comments.
- Even the earliest code developed in a project should adhere to the standards.

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 35 of 54

Best Practice 16: Design for ease of testing
Design application components so they can be tested and debugged easily.

Rationale

- Testing is a critical step in the development of client/server applications.
- Application components with consistent interfaces are easier to test on an application-

wide basis.
- Error handling, tracing, and check-pointing should be included.
- These functions should be implemented in the earliest phases of development.

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 36 of 54

Technical Standards
The State of Connecticut’s current application inventory has been documented in the following
matrices; each technology item was categorized as follows:

Obsolete - It is highly likely that these standards or products, while still in use, will not be
supported by the vendor (industry, manufacturer, etc.) in the future. Some products and
standards have already reached the non-supported state. Plans should be developed by the
agencies or the State to rapidly phase out and replace them with strategic standards or products.
No development should be undertaken using these standards or products by either the agencies or
the State.

Transitional - These are standards or products in which an agency or the State has a substantial
investment or deployment. These standards and products are currently supported by DOIT, the
agencies, or the vendor (industry, manufacturer, etc.). However, agencies should undertake
development using these standards or products only if there are no suitable alternatives that are
categorized as strategic. Plans should be developed by the agencies or the State to move from
transitional to strategic standards or products as soon as practical. In addition, the State should
not use these standards or products for development.
Note: many older versions of strategic standards or products fall into this category, even if not
specifically listed in a domain architecture document.

Strategic - These are the standards and products selected by the state for development or
acquisition, and for replacement of obsolete or transitional standards or products. (Strategic
means a three to four year planning horizon.) When more than one similar strategic standard or
product is specified for a technology category, there may be a preference for use in statewide or
multi-agency development. These preferred standards and products are indicated where
appropriate.
Note: some strategic products may be in “pilot testing” evaluation to determine implementation
issues and guidelines. Pilot testing must be successfully completed prior to full deployment by
the agencies or the State.

Research / Emerging - This category represents proposed strategic standards and products
that are in advanced stages of development and that should be evaluated by the State. Some of
these standards or products may already be undergoing “hands-on” evaluation. Others will need
to be tracked and evaluated over the next 6 to 18 months.

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 37 of 54

Standards 1: Client Interface Standards (Presentation tier)

The client Interface represents the first tier. Incorporated in the user interface are the menus, the
display and the aesthetics of the screens and windows that the user encounters. Presentation is its
only task, not processing the business logic.

Due to the need to provide anytime/anywhere access both internally and to the public at large,
the State’s strategic direction is to deliver applications via a browser-based interface.

Browsers supported for Internet clients are both Microsoft Internet Explorer and Netscape
Navigator. Applications should use standard functions and features that can be supported within
each browser.

Internal applications may make judicious use of the standard internal browser’s features (e.g.
DHTML, Java plugins) where it is unlikely that the application will be externalized. Use of a
GUI-based interface for some internal applications that require a rich user interface is allowed
when a browser-based alternative is not practical.

Supported
Client Interface

Obsolete Transitional Strategic Research /
Emerging

3270 X

GUI X

Web User Interface X
Wireless & Mobile
Devices X

In order to expand application availability, the State should continue to explore other application
interfaces such as kiosks, interactive voice recognition, and wireless & mobile devices such as
the Palm Pilot or Windows CE devices.

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 38 of 54

Standards 2: Standard Business Tier Languages

Java is the preferred strategic choice based on its multi-platform portability, it’s object-
orientation, its widespread acceptance, its support for application integration with Microsoft and
non-Microsoft legacy applications, its scalability, and its ability to produce reusable components.
As the base of shared components increases, new components will be needed less frequently,
significantly reducing development costs.

Avoid proprietary Java features or extensions that are provided by the Application Server or IDE
Vendors that would prevent an application from running in another J2EE compliant Application
Server unless it is the only way to meet the application’s business requirements.

All new, custom-developed, Java applications must conform to the State’s coding standards and
conventions (See Appendix B, Java Coding Standards and Conventions and Addendum A,
“Conventions for the JavaTM Programming Language” by Sun Microsystems, Inc.)

Following these coding standards and conventions is important because:

• 80% of the lifetime cost of a piece of software goes to maintenance.

• Hardly any software is maintained for its whole life by the original author.

• Code conventions improve the readability of the software, allowing engineers to
understand new code more quickly and thoroughly.

See the middleware domain for supported Java application servers.

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 39 of 54

Business Tier
Languages

Obsolete Transitional Strategic Research/
Emerging

Assembler X

C++ X

C#.NET X

Clipper X

COBOL X
COBOL II X

Delphi X

Java Preferred
Oracle Forms
(PL/SQL) X

Power Builder X

Powerhouse X
uniVerse Basic X

Unisys Coolice X

Unisys Mapper X

Visual Basic V6.0 X

Visual C++ X

VB.NET Acceptable

 Visual Basic .NET is acceptable for workgroup or departmental solutions where enterprise-wide
scalability and legacy application integration are not requirements.

Migration: Microsoft Visual Basic 6 (COM) to .NET
See the Microsoft .NET Migration Guidelines in Appendix C.

Interoperability (Java / Visual Basic (COM) / .NET):

When different application component architectures co-exist in the same environment there are
occasions where they must inter-operate to serve a common business need.

Several alternatives exist:

• Using messaging (see Standards 5, Inter/Intra Application Communication).

• Using the Web Service, special case of messaging with SOAP (message format) / WSDL
(interface definition) formats

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 40 of 54

• Using one of several Java/.NET bridges also can be used, the proprietary nature of these
solutions limits their viability.

• Use wrappers (use a thin layer of native code that interfaces with or wraps a component
or object written using another architecture enabling it to be freely used by the
application components wrapping technology).

• Other middleware solutions (e.g. CORBA).

• Resource Sharing - using common data (e.g. file systems) to share information.

Interoperability
Technique

Advantages Disadvantage Recommended
Usage

Messaging
Middleware

Adaptable, loosely
coupled,
Platform neutral

Will not permeate a
firewall without
authorization

Internal & External
application
communication

Web Services
Adaptable, loosely
coupled,
Platform neutral,
Open standards

Need own security,
performance, possible
version incompatibilities
(WSDL, SOAP)

Internal applications
where volumes are
low and platform
neutrality is desired

Bridges

High performance,
works across a
whole class of
objects (e.g.
Java/.NET)

Proprietary, cost Not recommended

Wrappers High performance,
simplicity

Platform specific, object
specific

Internal applications
where speed or
expedience are more
important that
adaptability and
platform neutrality

CORBA
Adaptable, loosely
coupled,
Platform neutral

Infrastructure
requirements, high
implementation costs,
requires specific
languages (e.g. C++)

Recommended
where an existing
CORBA
infrastructure
available.

Resource Sharing Platform neutral Performance, managing
shared file locations

ASP / ASP.NET
integration (session
state)

See the Middleware Domain architecture for more information.

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 41 of 54

Standards 3: Standard Data Access Tier

The data access tier is designed to abstract the details of data storage (e.g. schema, stored
procedures) from the other application layers. Therefore changes in the database should not
require any modification of the code in other tiers in order for them to remain functional.

Supported application languages are the same for the Data Access and Business tiers.

See the Middleware Domain and Data Domain Architectures for details on access methods,
supported databases, etc.

Standards 4: Application Architectures
It is important to plan and/or evaluate the architecture of each developed and purchased
application to determine the flexibility, extensibility and scalability of the delivered product.
Systems that fail to scale appropriately, or are unable to change quickly, are likely to die an early
death.

The architecture is a key element to the overall adaptability of an application, and provides many
of the services on which the application depends. This includes such capabilities as deploying on
an Extranet (i.e. business partner, client), transactional integrity, asynchronous processing, and
other system and database level services.

Development Guideline: Parameter and configuration files
Where feasible, use XML documents to persist run-time information.

Benefits

- XML documents are self-documenting for easy readability
- An XML parser will check the file for well-formedness
- If a schema is employed (recommended), an XML parser will perform validation

automatically eliminating custom validation code
- The parameter file can be edited with validation by a shrink-wrap XML editor
- Additional items may be added to the file without the need to modify all readers of the

file

Application
Architecture

Obsolete Transitional Strategic

Monolithic applications X
Two-tier applications X
Three-tier applications X
N-tier applications using
service-oriented
application architecture

X

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 42 of 54

Standards 5: Inter/Intra Application Communication
Messaging is the preferred method for passing information between application tiers. Use of
State-standard message oriented middleware for inter-application communication will provide a
mechanism that is open to any platform, any language, and any object framework.

The standard Inter-application message format is the XML document as defined by XML
schema. (Consider using XML documents for intra application communication as well when
adaptability is more important than performance or disparate technologies are used to implement
application tiers.)

Benefits:

XML documents are self-defining, which allows new information to be added without having to
modify all applications that use the document, facilitating change.

XML documents can easily be reused or extended.

Use of XML documents facilitates development by reducing custom validation code and by
pushing much of the integration testing back into unit testing (validation against an XML
Schema reduces errors in message formats that would otherwise only be caught in more costly
integration testing).

XML documents are becoming the de facto standard in the industry for business to business
communication, enterprise application integration, reporting, presentation, and content
management.

Use of XML documents as the message format for passing information from the middle
application tiers to the presentation tier allows the information to be transformed (using XSLT
and/or CSS) to a variety of different formats (e.g. HTML, WML). These transformations allow
the same information of be viewed in a variety of ways (e.g. browsers, mobile devices, text only)
by only modifying the presentation tier.

Web Services (UDDI, SOAP) are emerging industry standards for sending XML documents that
should be considered for inter-application communications. See the middleware domain for more
information.

Inter/Intra
Application
Communication

Obsolete Transitional Strategic Research /
Emerging

Web Services X
SOAP X
XML 1.0 X
W3C XML Schema X
XSLT 1.0 X

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 43 of 54

Standards 6: Web Development Standards
Active Server Pages (ASP) with ActiveX components:

Within the State this technology has been primarily implemented using Visual InterDev, Visual
Basic, and Visual C++. Visual InterDev provides an Integrated Development Environment (IDE)
that assists developers in adding VBScript to HTML pages, allowing the creation of dynamic
server-side content as well as providing the “glue” between the user interface and the business
components. The business components (ActiveX DLLs) are primarily produced using Visual
Basic extended with Visual C++ to add functionality that is not available using Visual Basic
alone. Active Server Page applications run mainly under Microsoft Internet Information Server
with the ActiveX components running under Microsoft Transaction Server or COM+.

ASP.NET :
ASP.NET is Microsoft’s successor to Active Server Pages. ASP.NET eliminates the use of
server-side script (VBScript), instead using any language compatible with the .NET framework
(see Standard Business Tier Languages). Visual InterDev has been replaced by the ability to
develop ASP.NET applications within the language-specific interface of Visual Studio.NET (e.g.
VB.NET). In addition, many features that required significant effort using Active Server Pages
are easily accomplished using ASP.NET:

• Server Controls which automatically determine the capabilities of the browser and
automatically customize the HTML accordingly;

• automatic state management
• ability to set execution on either client or server by setting a simple parameter
• use of server controls which expose attributes to applications in a native format easily

manipulated in Visual Studio .NET
• automation of client-side form validation (validation controls)
• separation of form from function (code-behind page vs. VBScript intermixed with

HTML)
Another significant advantage of ASP.NET (vs. ASP) is the ability to modify applications
dynamically (replace DLLs - typically middle-tier components). In contrast Active Server Pages
require a server restart which terminates all current connections.

Java Server Pages (JSP) with Servlets and Enterprise Java Beans:
The trend in developing n-tier Java applications is toward server-side development of Enterprise
Java Beans (EJB) and thin-client GUIs using Java Server Pages. This technology is analogous to
Active Server Pages. Developers separate presentation logic from business components by
encapsulating business/application logic in Beans that are accessed through tags that content
creators can use.

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 44 of 54

Supported
Web Technology

Obsolete Transitional Strategic Research /
Emerging

Active Server
Pages / ActiveX
Components

X

ASP.NET Acceptable
CGI X
Cold Fusion X
HTML X
Java Server Pages /
Servlets Preferred

The preferred strategic direction for web application development is use of Java Server Pages
and Servlets. This technology has the advantage of multi-platform availability, good integration
with Microsoft and non-Microsoft legacy systems, robust scalability, and full object orientation.

JSP, ASP and ASP.NET Comparison
Java Server
Pages

Active Server
Pages

ASP.NET

Runs on all major
web servers

Runs primarily on
Microsoft IIS

Runs primarily
on Microsoft IIS

Is interpreted only
once to Java byte-
code, and re-
interpreted only
when the file is
modified

Is interpreted each
instance
(VBScript)

Uses compiled
code (VB.NET)

Provides better
facilities for
separation of page
code and template
data by means of
JavaBean,
Enterprise
JavaBeans and
custom tag
libraries

Uses COM/DCOM
to call compiled
components within
DLLs. DLL
changes require a
server reboot.
Application code
(VBScript)
interspersed with
HTML content.

Uses the .NET
framework. DLL
changes done in
real time.
Eliminates the
need to
intersperse
server-side
application code
within HTML
content

Use of Active Server Pages .NET is an acceptable strategic alternative subject to the following
guidelines:

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 45 of 54

Web Project Type ASP.NET JSP/Servlets
Work Group Acceptable Preferred
Departmental Acceptable Preferred
Legacy Integration Not Acceptable Acceptable
Enterprise-wide
w/limited
scalability and/or
availability

Acceptable Preferred

Enterprise-wide w/
high scalability
and/or availability

Not Acceptable Acceptable

Public w/limited
scalability and/or
availability

Acceptable Preferred

Public w/ high
scalability and/or
availability

Not Acceptable Acceptable

Deployment Guidelines:
Internet Applications
All browser-based applications should support the major public browsers (e.g. Internet
Explorer, Netscape). Applications should be developed using server-side processing (e.g.
Servlets or DLLs) for all but rudimentary edits (using embedded JavaScript run within the
browser). Browser-specific extensions (e.g. VBScript in Internet Explorer) and required
plug-ins (e.g. JRE) should be avoided.
Internet applications are typically deployed in special “demilitarized zones” (DMZs)
delineated by Firewalls to protect the State from unauthorized access (hacking) and malicious
computer programs. It is vital that applications, which will be deployed in this hazardous
environment, be designed to adhere to the required security restrictions. It is good practice to
become familiar with these security restrictions prior to designing the architecture of an
application.

Intranet/Extranet Applications
Internal applications may make assumptions based on internal browser standards in order to
extend or enrich an application (e.g. use of client-side Applets), but only when such
additional functionality is required to support business requirements that could not be
reasonably supported using only server-side processing. The possibility that an internal
application may need to be extended to partners (via Extranet) that may not adhere to the
State’s architectural standards should be considered.
Java Web Start is an acceptable alternative to the browser for providing a Java Runtime
Environment for Java applications for frequent users of an application. This technology
provides a solid, zero administration environment for Java applications or applets. Once

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 46 of 54

WebStart is installed, it provides a self-updating mechanism (from an HTTP server) for
itself, the Java Runtime Environment(s) and the application(s) it supports. The advantage
over an applet running in a browser is that applications are cached locally improving startup
time. Applications are downloaded when an application is updated and not every time it is
invoked. Occasional users of an application are best served by running the application
within the browser.
It is recommended that Oracle Forms development be phased out over time in favor of
another EWTA approved development environment. For agencies with an existing
investment in Oracle Forms 6i, it is a viable front end for applications designed to use an
Oracle database as the backend. This RAD tool allows the developer direct access to exploit
the power of the Oracle database. PL/SQL is used to code within the form and to create
shared modules that can be plugged into many different 6i forms. Oracle Forms 6i
applications, used in conjunction with Oracle 9iAS, can be deployed via a web browser as a
Java applet without requiring any special programming or additional processing.
Deployment requires the JInitiator browser plug-in or Internet Explorer 6 or above.

Windows Forms (Winforms) are a type of rich user interface based on the .NET framework
and similar to Java Web Start applications. Winforms may be considered for Intranet
applications where a robust user interface is required. Winforms should be implemented
such that the Winforms are automatically deployed and updated via HTTP. Winforms
require that both the .NET Framework and the Microsoft Installer to be installed on the client
workstation. However, once installed this software provides the auto-deploy and auto-update
functionality for multiple Winforms applications.

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 47 of 54

Internet Applications Intranet Applications
Supported
Internet
Technology

Client Side Server Side Client Side Server Side

ASP.NET N/A Acceptable N/A Acceptable

ActiveX
Components

Not
recommended Transitional Not

recommended Transitional

VBScript Not
recommended Transitional Transitional Transitional

Windows Forms
(WinForms)

Not
recommended N/A Acceptable N/A

JavaScript Acceptable Not
recommended Acceptable Not

recommended

HTML Recommended Recommended Recommended Recommended

Jscript Not
recommended

Not
recommended

Not
recommended

Not
recommended

XML Recommended Recommended Recommended Recommended

Applets Not
recommended N/A Acceptable

(Requires JVM) N/A

Servlets N/A Recommended N/A Recommended
Web Start
hosted Java
Applications

Not
recommended N/A Acceptable N/A

Standards 7: Application Security Standards

See the Application Security Guidelines in Appendix A.

Standards 8: Integrated Development Environments (IDEs)
Use of IDE supports the design/code/deploy/debug cycle of modern development. An
integrated environment is designed to enhance developer productivity by making the
mechanics of development easier and faster.
Selection of an IDE is tightly bound to the development environment for which it is
designed.

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 48 of 54

In the case of Microsoft technology, use of Visual Studio.NET Enterprise Developer the
clear choice for supporting Active Server Page development due to limited competition and
an existing base of Visual Studio V6.0 licenses that can be upgraded at a reduced price. To
maintain existing COM+ applications, you will still need Visual Studio V6.0. Visual
Studio.NET can be used to develop new COM+ applications/components if required.

Borland JBuilder is the standard Java IDE due to its leading position in the industry and its
ability to easily target the leading J2EE application servers.

Integrated Development
Environments

Obsolete Transitional Strategic Research /
Emerging

Cold Fusion X
Oracle Forms X
Oracle JDeveloper X
Borland JBuilder
Enterprise

X

Visual Age Java Enterprise
Edition / Websphere
Studio Application
Developer

 X

Visual Café X
Visual Studio (Visual
Interdev / Visual Basic /
Visual C++*)

X

Visual Studio.NET X
XML SPY 4.0 X

* Note: Visual C++ is only to be used only to augment Visual Basic development when Visual Basic does not support a required
feature.

Standards 9: Configuration (Source Code) Management
Code management is crucial to maintain application integrity through the development and

maintenance cycle. Ideally code management tools should integrate with defect tracking and
project build tools. The State will require a code management system that can scale across the
enterprise to foster an environment that supports re-use of shared components across the
enterprise. We do not have enough information at this time to recommend a strategic choice in
modeling tools, but Rational ClearCase is being considered.

Supported
Tools

Obsolete Transitional Strategic Research /
Emerging

Pan Valet X
Rational ClearCase X
SCLM X
Visual Source Safe X

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 49 of 54

Standards 10: Object Modeling Tools
 Use of object modeling principles and supporting tools are crucial to the successful
implementation of large-scale object-oriented applications. We recommend modeling tools that
support industry standard UML. Ideally the tool integrates with the developer’s IDE enabling
roundtrip engineering between class diagrams and the code and provides roundtrip engineering.

Standards 11: Enterprise Reporting / Structured Information Delivery
Internet-capable report writers are a vital part of the State’s strategy to provide
anytime/anywhere access to information. These tools are designed to enable developers to easily
deliver reports that are either fundamental to a system or more complex than the end-user can
reasonably be expected to produce.

Products in this class provide browser-based report viewing, interactive drill down and dynamic
sorting of report data via DHTML. Data download options are built in (e.g. spreadsheets, XML
documents, Acrobat files).

Enterprise Reporting tools are primarily designed for electronic information dissemination, but
are also suitable for medium to large paper reporting requirements where batch scheduling and
unattended operation are desired.

Enterprise Reporting Obsolete Transitional Strategic Research /
Emerging

Actuate e.Reporting Suite 5 X
Crystal Enterprise 8.x X
Crystal Professional 8.x X
InetSoft Style Reports 4.x X
Easytrieve Plus X
Focus X
MS Access* X
QMF X

*Although we do not recommend Microsoft Access as a strategic developer-reporting tool for enterprise-wide technical
architecture, it does provide a single end-user solution for desktop or small workgroup applications. MS Access is also a useful
tool for rapid development of application prototypes and database design prototypes. A MS Access prototype database can be
readily upsized to more strategic databases via add-ins (e.g. Scriptoria for UDB) that create DDL and export the data.

Java-based reporting tools:
InetSoft Style Reports was chosen to support the Java development environment based on its
robust feature set, its installed base within the State, and its favorable value to cost ratio.
InetSoft is a small privately held company and its long-term viability needs to be monitored to
mitigate this risk.

Object Modeling
Tools

Obsolete Transitional Strategic Research /
Emerging

Rational Rose X
Together J X
Visual Modeler X

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 50 of 54

Actuate e.Reporting Suite is a strong contender supported by a viable vendor, but its high entry
price and lack of an installed base within the State keep it from being classified as strategic at
this time. This product’s robust feature set and support of both the Java and Microsoft
development environments warrant monitoring for future consideration.

Microsoft-oriented reporting tools:
Crystal Decisions offers two products capable of Enterprise Reporting (ER),

Crystal Reports Professional and Crystal Reports Enterprise.

• Close analysis of Crystal Professional revealed that its fundamental design is not
suited for ER without adding additional, costly, components. While not meeting the
state's standards for ER, Crystal Professional is acceptable for shops with an
existing investment in this technology for developer-oriented report writers in cases
where the "Internet-capable" requirements are minimal to none as it can readily be
migrated to Crystal Enterprise should the requirements change.

• After thorough evaluation including TCO, Crystal Enterprise emerged as the
preferred solution for non-Java development.

Standards 12: Ad Hoc Query/Analysis
In situations where the drill down and sorting features of Enterprise Reporting products are
insufficient to meet user needs for custom reporting, Ad Hoc Query / Analysis tools may be used
to satisfy the needs of the “advanced” user.

These tools provide a less rigorous development environment that do not necessarily require the
services of a professional developer to use effectively while providing ad hoc query, user-
developed reports, and access to OLAP cubes.

The top industry contenders are listed as Research items for future consideration. The line
between Enterprise Reporting and Ad Hoc Query and Analysis tools continues to blur as vendors

Supported
Tools

Obsolete Transitional Strategic Research /
Emerging

Brio Intelligence X
Cognos PowerPlay X
Business Objects X
Crystal Analysis
Professional

 X

MS Access X
SAS* X
SPSS* X

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 51 of 54

extend their products features. Similarly, some tools in this category (e.g. Cognos PowerPlay)
have multidimensional features that may satisfy modest OLAP requirements.

• Statistical analysis products – no strategic recommendation available.

Standards 13: Online Analytical Processing (OLAP) tools

Tools in this category are required when high-end scalability and advanced ad hoc analytical
queries and cross-dimensional operations are required. First tier products is this category are
listed for future reference.

Supported
Tools

Obsolete Transitional Strategic Research /
Emerging

Hyperion Essbase X
Cognos PowerPlay X
Oracle Express X
MicroStrategy X

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 52 of 54

Standards 14: Geographic Information Systems (GIS) Software Standards
Development of GIS based applications plays a critical role in providing and maintaining spatial
information to the public and decision-makers. Several State agencies have invested

considerable amount of resources in delivering products based on GIS technologies.

Product Selection and Upgrades:
First time users are advised to use the preferred ESRI products, however, we understand that
rationale may exist based on the business needs to use the Acceptable Intergraph GeoMedia
Professional product. Users are welcome to request consultation with the GIS subcommittee
members for making the proper choice.
Agencies that are already using ESRI products such as older versions of ArcView GIS or
ArcInfo (i.e. versions prior to 7.x) should upgrade to ESRI ArcGIS Desktop 8.x. Similarly, if the
agencies are using older version of Intergraph Geomedia Professional, then they should upgrade
to the most recent version of the Intergraph GeoMedia Professional or switch over to ESRI
products. Agencies currently using Mapinfo software should transition to ESRI ArcGIS 8.x
product.

ArcView GIS 3.x and Arc/Info 7.x to ArcGIS 8.x conversion issues:
Refer to “ArcGIS Migration Guide”1 in Addendum B for detailed discussion on the topic.

1 ArcGIS Migration: Written for GIS Managers is reprinted courtesy of ESRI. Copyright
(c) 2001 ESRI. All rights reserved.

Supported
Tools

Obsolete Transitional Strategic Research /
Emerging

ESRI ArcGIS Desktop 8.x
(Includes ArcView 8.x and
ArcInfo 8.x)

 Preferred

Intergraph GeoMedia
Professional 5.x

 Acceptable

MapInfo Professional 7.x X

ESRI ArcView 3.x X
ESRI ArcInfo 7.x X

ESRI ArcPad 6.x X

ESRI ArcIMS 4.x X
ESRI ArcIMS 3.x X

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 53 of 54

Integration and the future of GIS:
Companies making GIS based software have relied on proprietary design and code, however,
currently GIS software vendors have formed the OpenGIS Consortium and are working on
establishing and developing OpenGIS specifications. The OpenGIS specifications will enable
users and developers to freely exchange and apply spatial information, applications, and services
across networks, different platforms and products.

Application Development:
When a vendor’s product offers the option, applications should be developed using EWTA-
compliant languages (e.g. Java, Visual Basic).

Standards 15: Standard Project Management Tools
Use of project management principles is crucial to successful project delivery. Due to its
popularity, MS Project has become the de facto State standard. However, a more robust tool set
with enterprise-wide functionality should be considered.

Supported
Tools

Obsolete Transitional Strategic Research /
Emerging

MS Project X
PlanView PSA X

Application Development domain Technical Architecture – 3-21-2003

Application Architecture ver 25.docPage 54 of 54

To be determined:

Standards
• Object Modeling Standards and Tools
• Standard Development Methodology Documentation Tools and Standards
• Source Code Management Standard
• Consideration of GUI front-end tools for legacy applications

Guidelines
• Component Development Guidelines
• Design Pattern Library Guidelines
• Software Metrics Standards
• J2EE / DCOM Integration Guidelines
• Software package Integration Guidelines
• Business Process Reengineering Guidelines
• Inter/Intra Application Communications (XML) Guidelines
• Quality Assurance and Quality Control Guidelines
• Java Framework

Other
• Standard Defect Tracking System
• Statewide Component Library

